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This paper presents analytical and numerical results for separated stratified inviscid
flow over and around an isolated mountain in the limit of small Froude number.
The vertical density profile consists of a lower strongly stratified layer whose depth is
just less than that of the mountain. It is separated from a semi-infinite upper stably
stratified layer by a thin, highly stable, inversion layer. The paper aims to provide,
for this particular profile, a thorough analysis of the three-dimensional separated flow
over a mountain top with strong stratification. The Froude numbers F and FI of the
lower layer and the interface are small with FI � F � 1, but the upper-layer Froude
number is arbitrary. The flow at each height in the lower layer is governed by the two-
dimensional Euler equations and moves horizontally around the mountain. It is given
by a modification of a previous model using Kirchhoff free-streamline theory for the
separated flow region downstream of the mountain. The pressure variations associated
with the lower-layer flow are of the same order as the dynamic head and induce
significant displacements of the inversion layer. When the inversion is near the top of
the mountain these deflections are of the same order as the height of the projecting
part of the mountain top and combine with the flow over the mountain top to excite
vertically propagating internal waves in the upper layer. The resultant pressure field,
vertical stream surface displacements, and surface streamlines in the upper layer are
described consistently in the hydrostatic limit. Many of the features of the upper flow,
including the perturbations of the critical dividing streamlines, are similar to those
in flows with uniform stable stratification at low Froude number. Comparisons are
made with experiments and approximate models for these summit flows based on the
assumption that the dividing streamlines have small vertical displacement.

1. Introduction
Three-dimensional flows over orography with strong stable upstream stratification

have been extensively studied computationally (e.g. Smolarkiewicz & Rotunno 1989)
and experimentally (e.g. Brighton 1978a , b; Lin et al. 1992; Vosper et al. 1999).
However, two central questions remain unanswered, namely how the separated wake
flow is affected by buoyancy forces and how it interacts with the flow over the
mountain. Approximate models have been proposed both for the time mean and
fluctuating structure of the wake (e.g. Chomaz, Bonneton & Hopfinger 1993; Hunt
et al. 1997; Hunt & Fernando 1998), but no systematic theoretical model has been
proposed covering all the related regions of the flow, even for steady flow over
an idealized shape. The objective of this paper is to provide such a model for a
particular shape and type of approach flow.
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In these kinds of flow, around most high mountains and mountain ranges in the
atmosphere and around many sea mounts in the ocean, the Froude number is usually
small (� 0.3). The drag forces exerted by the obstacles and the flow perturbations
produced by them have a large effect on the local and general circulation of the atmo-
sphere and ocean. Even though Coriolis forces have a significant effect on the far field,
the flow around an isolated mountain is dominated by inertial and buoyancy forces
(e.g. Hunt, Olafsson & Bougeault 2001). For very large mountains, Coriolis forces and
flow separated flow significantly alter the overall flow around the mountain itself (e.g.
Orr et al. 2005). However, in most practical estimates for the drag of mountains used in
numerical weather prediction codes, Coriolis forces are neglected (Lott & Miller 1997).

At sufficiently high Reynolds number with constant density gradient, stably
stratified flows are characterized by the Froude number F = U∞/NH based on the
mountain height H , unperturbed flow velocity U∞ and buoyancy frequency N . When
a stable inversion layer with relative density jump �ρ/ρ is present near the summit
of the mountain, the flow depends also on the Froude number of the inversion layer
FI = U∞/

√
g′H , where g′ = g�ρ/ρ. Laboratory experiments have broadly confirmed

Drazin’s (1961) steady-state theory that for F � 1 and FI = ∞ (so no inversion layer
is present), the bulk of the flow is quasi-two-dimensional in horizontal planes, except
within thin layers, of thickness HF , at the top and bottom of a mountain (Sheppard
1956; Snyder, Britter & Hunt 1980; Greenslade 1994). According to Smolarkiewicz &
Rotunno (1989) and Hunt et al. (1997), this is why vertical vorticity is present in
the flow and why flow separation is driven by an essentially inviscid mechanism.
In Drazin’s inviscid analysis, the horizontal flow below the mountain top is not
matched with the baroclinic flow over the top where significant vertical vorticity is
generated. Also, in the top layer, the fluctuations are of order FH , producing waves
that propagate downwards as well as upwards (Newley, Pearson & Hunt 1991).
This explains why experimental results for vertical deflections are larger than the
amplitude O(F 2H ) predicted by Drazin’s theory (Hunt et al. 1997; Vosper et al. 1999).

Laboratory experiments (Snyder et al. 1980) have shown that the separated flow
region has only a weak effect on flow near the top of the mountain. There was little
difference in the flow over the top when it was isolated by fixing a flat horizontal
plate at the level of the dividing streamline that separates the top layer from the two-
dimensional bluff flow below. Here, the complex interaction between these regions is
studied by analysing flow situations where a strongly stably stratified, arbitrarily thin
inversion layer lies just below the top of the mountain. This is a common meteor-
ological situation, as seen in satellite pictures of clouds around isolated mountains
(Smolarkiewicz, Rasmussen & Clark 1988; Smith & Grubisic 1993; Smith et al. 1997),
and for this particular stratification, the mathematical analysis of the thin layer near
the top of the mountain is linear, which is not the case when there is no inversion layer
(Greenslade 2000). The flow below the inversion, including the separated flow region,
produces dynamic pressure perturbations and deflections of the inversion layer, which
perturbs the flow above the inversion. However, when the inversion layer is strong,
the upper flow does not affect the wake region or the flow in the lower layer.

The laboratory experiments of Brighton (1978 b), Hunt et al. (1997) and Vosper
et al. (1999) show that the wake in the main region is generally unsteady. For
F < 0.4, flows are characterized by periodic vortex shedding with a Strouhal number
S = ωL/U∞ (for ω the frequency of vortex shedding and L the obstacle base
width) of approximately 0.2 for a wide variety of body shapes. The position of the
separation lines on the sides of the body oscillates periodically and varies with height.
These unsteady effects are not treated here in detail because the unsteady velocity
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Figure 1. The form of stably stratified separated flow around an axisymmetric three-
dimensional mountain at low Froude number. (a) A typical mountain with sloping sides.
(b) The idealized mountain with a rounded top discussed here. Note the separation angle γ .

fluctuations (with pressure fluctuations of order 0.1ρU 2
∞) produce only weak vertical

fluctuating displacements of the inversion layer of order 0.1F 2
I H . Because F � 1, these

displacements produce weak waves which propagate approximately horizontally in
the upper layer (Carruthers & Hunt 1986). The boundary-layer flow, vortex shedding
and the pressure gradient in the lower layer all affect the mean separation position
through the displacement of the inversion layer. Some studies of the wakes behind
isolated mountains with vortex shedding and elevated inversion layers have indicated
that they are similar to low-Reynolds-number wakes, with laminar-like separation
positions. This may be associated with the mountain having very low slopes at the level
of the inversion layer (Brighton, personal communication). Without inversion layers
in flows at low Froude number (and order-one slope), the locations of the separation
points are similar to those at high-Reynolds-number flow around bluff bodies (e.g.
Hunt & Snyder 1980). In this paper, we consider a full range of separation positions.

Experiments and computations with bodies of different shapes (Sysoeva &
Chashechkin 1988; Olafsson & Bougeault 1997; Vosper et al. 1999) show that the
mean wake profiles immediately behind the obstacles differ significantly depending on
the type of body and the Froude number. A physical argument in Hunt & Fernando
(1998), based on idealized experiments with sloping vortices, and the experiments
of Sysoeva & Chashechkin (1988) suggest that sufficiently far downstream from the
obstacle, the wake becomes approximately rectangular. To avoid some of the special
features of wakes of sloping mountains, the mountain in the analysis here is chosen
to be cylindrical below the inversion layer with a rounded top above the inversion.
For this geometry, the flow is taken to separate in the lower layer, but remains
attached above the inversion (figure 1). This ensures that the form of the flow is
similar to those of the experimental results of Brighton (1978a , b); Hunt & Snyder
(1980) and the numerical study by Hanazaki (1994) of rounded obstacles showing
that the flow separates below the summit region. Section 2 gives further details of
the flow configuration. Section 3 describes the lower-layer flow and § 4 the flow aloft.
Section 5 briefly discusses the results.

2. Flow configuration and governing equations
Consider the steady flow of two stably stratified fluid layers separated by a very thin,

strongly stably stratified inversion layer past an obstacle of typical horizontal scale L
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(figure 1). The aim is to calculate the flow fields above and below the inversion which
are coupled because of the vertical deflection of the layer. The effects of the strengths
of the stable stratification in the two layers in relation to that of the inversion layer
and the difference in level between the inversion layer and the top of the hill are
analysed in detail. It is assumed that the Reynolds number is large and that the
height of the hill above the inversion layer is sufficiently small that in the flow over
the hill above the inversion layer there is no separation. Take Cartesian axes Ox∗y∗z∗

so that Oz∗ is the vertical (upwards positive) axis of symmetry of the obstacle, the
plane z∗ =0 coincides with the undisturbed inversion layer far from the obstacle, and
Ox∗ is in the direction of the flow at large distance, which is taken to be uniform of
speed U∞. Let the undisturbed density profiles in the two layers be ρi∞(z∗) (here, and
elsewhere, i = 1, 2 corresponding to the upper and lower layers, respectively), so that
the density jump across the inversion is �ρ = ρ2∞(0) − ρ1∞(0) = ρ2∞(0)(1 − κ) > 0, for
κ = ρ1∞(0)/ρ2∞(0) < 1. In order to focus on the effects of the inversion layer, it is
assumed that in both the upper and lower layers, the stratification is uniform and has
the same strength (defined by the buoyancy frequency N ). It is subsequently noted in
§§ 3 and 4 and that this restriction is not necessary in the limit considered here. The
obstacle stands on a flat bottom, z = −H , pierces the inversion layer and projects
into the upper layer which is taken to be vertically unbounded. The non-dimensional
velocity components (ui, vi, wi), perturbation densities ρi and pressures pi , are
formed from the corresponding (starred) dimensional quantities through the scalings

(x∗, y∗, z∗) = (Lx, Ly, Hz), (u∗
i , v

∗
i , w

∗
i ) = U∞(ui, vi, Hwi/L),

ρ∗
i = ρi∞(0)

(
1 − N2H

g
(z − ρi)

)
, p∗

i = ρi∞(0)gH

(
−z +

N2H

2g
z2 +

U 2
∞pi

gH

)
,


(2.1)

Since constant buoyancy frequency implies a linear density gradient (outside the
inversion layer), the non-dimensional perturbation densities ρi have been scaled
as non-dimensional vertical heights – the local vertical displacements of isopycnal
surfaces from their upstream heights. The equations of motion in both layers can
then be written (Baines 1995) as

(1 − (z − ρi)β
−2)(ui∂x + vi∂y + wi∂z)

 ui

vi

ε2wi

 +

 ∂xpi

∂ypi

∂zpi

 +

 0
0

ρi/F
2

 = 0, (2.2)

∂xui + ∂yvi + ∂zwi = 0, (2.3)

(ui∂x + vi∂y + wi∂z)ρi = wi, (2.4)

where

ε =
H

L
, FI =

U∞√
g′H

, F =
U∞

NH
, β = (1−κ)−1/2F/FI =

√
g

N2H
, (2.5)

g is the acceleration due to gravity and g′ = g(1 − κ) is the reduced gravity at the
interface.

Away from the obstacle, the kinematic condition on the two layers is that the
inversion layer is very thin so the interface, z = h(x, y), is a material surface and
further that the pressure is continuous across the interface (e.g. Batchelor 1967). This
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gives the matching conditions at z = h(x, y),

wi = uihx + vihy (i = 1, 2), (2.6)

κp1 − p2 = −h/δ + (1 − κ)h2/2, (2.7)

where h = h/F and δ = F 2
I /F is the ratio of the square of the Froude number of

the inversion layer FI to the Froude number for the lower-layer flow F . Since the
obstacle is impermeable, this provides a local kinematic condition,

wi = uifx + vify, i = 1, 2 on z = f (x, y). (2.8)

Previous studies (Hunt et al. 1997; Greenslade 2000) have shown that if the obstacle
projects a height O(FH ) above the dividing streamline then the flow in the upper
layer is nonlinear with breaking internal waves and separated flow. Here, the height of
the obstacle above the inversion layer is taken to be much less than O(FH ), given by

z = αF f̃ (x, y), (2.9)

where f̃ has maximum unity and α � 1. Thus, the top of the mountain protrudes a
height �H = αFH above the inversion layer, and the flow perturbation in the upper
layer is small.

The remaining vertical boundary condition on the semi-infinite upper layer is the
radiation condition that there is no incoming energy from z � 1. In this non-
dimensionalization, the uniform condition at large x, y becomes

h → 0 ρi → 0, (ui, vi, wi) → (1, 0, 0) as x → −∞ (i = 1, 2). (2.10)

The next step is to analyse the system (2.2)–(2.10) in the limit F → 0, δ → 0 and
α → 0 with σ = δ/α, ε and κ fixed. The small value of F means that Drazin’s solution
gives the leading-order flow in the lower layer (see § 3). The small value of δ = F 2

I /

F = U∞N/g′ implies that inertial accelerations in the lower layer are much smaller
than the reduced gravity at the interface. Thus, the highly stable inversion layer is
only weakly distorted by the pressure field of the lower layer. The small values of
α and δ mean that the orographically forced flow in the upper layer is only a linear
perturbation of the approach flow. The ratio σ can be written as σ = δ/α =F 2

I H/�H .
Thus, σ measures the relative importance of upper-layer interface displacements
forced by the lower-layer pressure field compared to displacements forced by flow
over orography. When σ � 1, the inversion layer remains flat and only the orography
above the inversion layer affects the upper flow. As σ increases, the effect of the
lower-layer forcing becomes significant, as shown in § 4. Note that if both α and δ

are of order unity, the upper-layer flow is fully nonlinear and three-dimensional and
thus analytically intractable (Greenslade 1994).

3. The lower-layer flow
In the main part of the lower layer, the flow is horizontal to leading order. There

is a small vertical velocity of order F n, with n � 1 (see below), so, following Drazin
(1961) and Brighton (1978a, b)

u2 = u0(x, y, z) + o(1),
v2 = v0(x, y, z) + o(1),
w2 = F nw0(x, y, z) + o(F n),
ρ2 = F nρ0(x, y, z) + o(F n),
p2 = p0(x, y, z) + o(1).

 (3.1)
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Substituting (3.1) into (2.2)–(2.10) gives the quasi-two-dimensional system for the
horizontal velocity field

(u0∂x + v0∂y)

(
u0

v0

)
= −

(
p0x

p0y

)
,

p0z = −ρ0, w0 = (u0∂x + v0∂y)ρ0.

 (3.2)

with

u0fx + v0fy = 0 on z = f (x, y), (3.3)

(u0, v0, ρ0) → (1, 0, 0) as x → −∞. (3.4)

For axisymmetric obstacles, centred on (x, y) = (1, 0), the shape z = f (x, y) can be
re-expressed as the obstacle radius R(z) at each height z. If the flow remains attached
to the body then (provided dR/dz � O(F 2), Brighton 1978a , b) system (3.2)–(3.3)
admits the leading-order Drazin solution which in each plane z = const corresponds to
two-dimensional irrotational flow about a circle of radius R(z). A consistent solution
for the vertical velocity perturbation in the expansion (3.1) was obtained by Drazin
(1961) and Brighton (1978a , b), in which n= 2, but these solutions did not include
the effects of vertical perturbations of order F which can propagate upward from
the bottom and downward from the top of the obstacle where expansion (3.1) does
not hold (Newley et al. 1991; Vosper et al. 1999). For the idealized case considered
here by taking the obstacle to be a right circular cylinder of radius L (or unity when
normalized), R(z) ≡ 1 and w0 = 0. The largest vertical perturbation is then caused by
the vertical displacement of the interface and is O(FI ), much less than O(F ).

The main limitation of Drazin’s theory is that it does not allow for the separated
wake which always occurs in high-Reynolds-number flows. Therefore, here, the theory
is extended to give a consistent model with a recirculating region downstream of
the orography. As in Drazin’s analysis, the stratification N is sufficiently strong and
velocities are sufficiently small that vertical displacements remain negligible and system
(3.2)–(3.3) remains valid. However, unlike Drazin’s analysis, two free streamlines
separate symmetrically (with respect to the flow centreline) from the surface of the
cylinder in each horizontal plane. Within the separated region, the flow is stagnant and
the pressure is the constant unperturbed far-field pressure. Along the free streamlines,
the flow speed is U∞ and once the points of separation of the free streamlines are fixed,
the flow field in each horizontal plane follows from Kirchhoff free streamline theory
(Brodetsky 1923; Birkhoff & Zarantonello 1957; Gurevitch 1965). In the context of
the present purely inviscid theory, consistent separated solutions exist for a range of
positions of the separation points. The precise position of the separation points in a
given flow depends on a number of factors and thus solutions are presented here for
the whole range of separation angles. Figure 2 shows pressure contours (isobars) in the
(x, y)-plane for separation point positions corresponding to the three separation angles
(measured from the forward stagnation point), γS =55◦ 2′ 15′′, 110◦ and 124◦. The
smallest angle, γS = 55◦ 2′ 15′′, corresponds to smooth separation with the curvature
of the free streamline being the same as the curvature of the rigid wall at separation.
This is the classical Brillouin–Villat condition and is consistent with laminar boundary
theory (Sychev 1972; Smith 1978). The largest angle, γS = 124◦, is close to the max-
imum permissible value of separation angle of 124◦ 12′ 34′′ when the free streamlines
converge far downstream (Gurevitch 1965) and γS = 110◦ shows typical intermediate
behaviour.

Experiments show that in high-Reynolds-number flows, the separation angle is
unsteady and its mean value differs significantly between laminar and turbulent
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Figure 2. Pressure contours (isobars) in horizontal planes for separated Kirchhoff flow past
a circular cylinder of unit radius for three separation angles (a) γ = 55◦ 2′ 15′′, (b) γ = 110◦,
(c) γ = 124◦. The cylinder and free streamlines are shown by long dashed lines. Positive
pressure contours are shown in solid lines, negative pressure contours are short dashed lines.

flows. On mountains with small slopes (less than 0.1, say) the diffusion of vertical
vorticity is large and even at high Reynolds number (based on mountain width and
oncoming flow speed) the wake behaves more like a moderate Reynolds flow, as
noted in the description of wakes behind Madeira by Moll (1971), summarized in
Berger & Wille (1972). In this flow, figure 2(a) would be more relevant. For typical
turbulent boundary layers, Gurevitch (1965) estimates the separation angle for steep
topography to lie in the range γ � 120◦–124◦ and then figure 2(c) is more relevant.
Provided the separation angle is not too close to the maximum value, the separated
wake region grows downstream like those described in the experimental work of Hunt
& Snyder (1980). Flows past steep orography are most likely to resemble figure 2(c)
(e.g. Smolarkiewicz & Rotunno 1989; Hunt et al. 1997).

4. The upper-layer flow
For small δ and α, the upper-layer flow is simply the linear internal wave field

forced by the small perturbations at its lower boundary and so it can, in principle,
be calculated for arbitrary profiles of stratification in the upper layer. Since here the
upper-layer stratification has been taken to be the same as that in the lower layer,
the vertical scale of wave motions is small, of order F . The stretched vertical variable
ζ = z/F , so ζ is of order unity in a layer of thickness F . Then system (2.2)–(2.10)
admits a solution, linearized about undisturbed flow, of form

u1 = 1 + αu′(x, y, ζ ) + o(α),
v1 = αv′(x, y, ζ ) + o(α),
w1 = αFw′(x, y, ζ ) + o(αF ),
ρ1 = αFρ ′(x, y, ζ ) + o(αF ),
p1 = αp′(x, y, ζ ) + o(α),
h = δFh′(x, y, ζ ) + o(αF ),


(4.1)

satisfying

u′
x = −p′

x, v′
x = −p′

y, ρ ′ = −p′
ζ ,

u′
x + v′

y + w′
ζ = 0, ρ ′

x = w.

}
(4.2)

The flow is unperturbed at large horizontal distances so (u′, v′, ρ ′) → (0, 0, 0) as x →
−∞ and the upper boundary condition for the layer is the requirement that the group
velocity of radiated waves has a positive upwards component. The lower boundary
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condition introduces the interaction with the lower layer. Since α � 1, the linearized
impermeability condition on the obstacle can be applied on ζ =0 (e.g. Smith 1980) so

w′ = f̃x(x, y) on ζ = 0 when (x − 1)2 + y2 < 1. (4.3)

The new feature of the solution is that the vertical velocity is also forced by vertical
movement on the interface. Thus,

w′ = σh′
x(x, y) on ζ = 0 when (x − 1)2 + y2 > 1. (4.4)

The interface displacement is determined from the lower-layer pressure through (2.7).
Since p1 is of order α � 1 and h = h/F is of order δ � 1, only two terms of (2.7)
contribute at leading order, giving

h′ = p0(x, y, 0) on ζ = 0 when (x − 1)2 + y2 > 1, (4.5)

with the interface displacement determined by the lower-layer pressure field. Because
α � 1, the pressure fluctuations produced by the flow in the upper layer, of order
α, are much weaker than those produced by the lower layer and so the pressure
contours of the lower-layer separated Kirchhoff flow determine the contours of the
interface elevation.

The results for the laminar flow separation angle in figure 2(a) show that p0 and
h attain their maximum values at the forward stagnation point and then gradually
decrease downstream. For turbulent flow separation, figure 2(c) shows the same
deflection around the stagnation point, but a marked dip in the pressure and inversion
height at the sides of the mountain, just upstream of the separation point. Downstream
of separation the displacement decreases to zero.

System (4.2)–(4.5) reduces to the linear hydrostatic internal wave equation for the
density fluctuations, namely

ρ ′
xx + ρ ′

yy + ρ ′
xxζζ = 0, (4.6)

with boundary conditions

ρ ′(x, y, ζ = 0) = h̃(x, y) =

{
σh′(x, y) for (x − 1)2 + y2 > 1,

f̃ (x, y) otherwise.
(4.7)

The solution of (4.6)–(4.7) subject to the radiation condition has the straightforward
Fourier transform expression (Smith 1980)

ρ ′(x, y, ζ ) =

(
1

2π

)2 ∫ ∫ +∞

−∞
ĥ(k, l) exp

(
i

[
ζ

√
k2 + l2

k
+ kx + ly

])
dk dl, (4.8)

where ĥ(k, l) =
∫∫ +∞

−∞h̃(x, y) exp (−i [kx + ly]) dx dy. In the numerical solutions below,
the obstacle shape in the upper layer is paraboloidal with

f̃ (x, y) = 1 − (x − 1)2 − y2 for (x − 1)2 + y2 < 1. (4.9)

Figure 3(a) shows the density field above the obstacle for σ =0 when the inversion
layer is so strong that the lower-layer pressure field cannot perturb it and it remains
horizontal. The density field is then precisely that for flow over an axisymmetric
obstacle on a flat plane. The flow is closely similar to the hydrostatic stratified flow
over a bell-shaped mountain described by Smith (1980). However, the discontinuity in
the slope of the streamlines where the obstacle intersects the inversion level introduces
small perturbations downstream of the obstacle that are not present behind smooth



Separated flow around a mountain 113

0 2 4 6 8
x

–3
–2

–1

0

1

2

3

0 2 4 6 8
x

–3
–2

–1
0

1

2

3

0 2 4 6 8
x 

–3
–2

–1

0

1

2

3

0 2 4 6 8
x

–3
–2

–1
0

1

2
3

0

1

2

3

4

–10 –5 0 5 10 15
(x)

y

y

(a)

(b)

ζ 
=

 z
/F

Figure 3. (a) Contours of the density perturbation ρ ′ = ρ1/(αF ) at different levels ζ = z/F for
the paraboloidal obstacle (2.9), (4.9) when σ = 0 when the inversion layer is so strong that it
remains flat. The obstacle perimeter is shown with a long dashed line. Solid lines correspond
to positive ρ ′ (upward displacements of upstream level surfaces), dashed lines to negative ρ ′

(downward displacements). (b) Streamlines, or lines of constant density perturbation ρ1/F ,
along the plane of symmetry y = 0 for different values of ζ and α = 0.3. Each plot is shifted
vertically by its value of ζ . The flow is from left to right.

topography (Feng 1995). These perturbations also appear in figure 3(b) which shows
normalized density perturbation profiles ρ1/F as functions of x in the plane of
symmetry y = 0 for different values of ζ . The slope discontinuity causes density
profiles to steepen near the rear of the obstacle.

When σ is finite but still small (i.e. σ < 1), the wave pattern in the upper layer
continues to be mainly determined by the projecting part of the obstacle rather than
by the separation in the lower layer. Figure 4 shows the density contours for σ = 0.5
and for two separation angles, γS = 55◦ 2′ 15′′ and γS = 124. The higher pressure
associated with flow deceleration in the lower layer causes upward displacements of
the stream surfaces near the interface in the upper fluid with the streamwise extent
of the regions of positive perturbations near the obstacle decreasing with height.
The downstream shift of the separation point in moving from figures 4(a) to 4(b)
introduces density perturbations somewhat upstream of the separation point and in
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Figure 4. Density perturbation contours ρ ′ = ρ1/(αF ) at different levels above the inversion
layer (ζ = 0.25, 1.0, 1.5, 3.0) as in figure 3(a) but for σ = 0.5 (weak perturbation of the inversion
layer). The lower-layer separation angles are (a): γS = 55◦ 2′ 15′′ and (b): γS = 124◦. The dashed
lines behind the obstacle show the positions of the two free streamlines in the lower layer.

the wake region. These tend to become V-shaped at higher levels above the mountain
where they have crests and troughs along the line of symmetry (as in figure 4b,
ζ = 3.0). This is not typical of hydrostatic flow and has been previously attributed to
non-hydrostatic effects (Smith 1980).
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Figure 5. (a) Density perturbation contours ρ ′ = ρ1/(αF ) at different heights ζ as in figure 4,
but for higher Froude number σ = 1.5 and γS = 124◦. (b) Streamlines, or constant density
perturbation contours ρ1/F for this flow with α = 0.3 as in figure 3(a).

For σ > 1, lower-layer pressure distribution and the consequent vertical displace-
ment of the inversion layer affects the upper-layer wave field. Since the separation
of the flow in the lower-layer has such a large effect on the pressure distribution
downstream of the obstacle, it significantly influences the wave pattern. This appears
clearly in figure 5(a) which shows density contours in horizontal planes and in
figure 5(b) which shows streamlines or density perturbation profiles in the plane of
symmetry y =0 for σ = 1.5. The main feature of the flow around the mountain is
the strong density perturbation near the separation region. Note in figures 3(b) and
5(b) how, as the Froude number rises, the flow over the obstacle in the upper-layer
becomes asymmetric. There is a strong lee side downflow, even when F � 1, which
leads to a deflection of the inversion layer (or dividing streamline) on the lee side
(Hunt & Snyder 1980; Orr et al. 2005). The amplitude of the downstream wavetrain
far above the mountain is also larger than for σ = 0.5.
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Figure 6. Contours of the upper-layer pressure perturbation p′ = p1/α at different heights ζ
for σ =0.5 γ = 124◦. Solid lines correspond to positive p′ and dashed to negative p′.
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Figure 7. Contours of the upper-layer pressure perturbation p′ = p1/α as in figure 6,
but for σ = 1.5.

Figures 6 and 7 give the pressure perturbation contours corresponding to figures 4
and 5. The pressure fields mimic the corresponding density fields and show a dispersive
V-shaped wave pattern developing behind the obstacle with increasing height. The
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increase in σ between figures 6 and 7 increases the relative importance of the lower-
layer pressure field and intensifies the V-wave above the summit and wake, and
produces stronger waves in the symmetry plane y = 0. Figure 7 shows that, for large
σ , the lower-layer pressure forces positive pressure perturbations in the upper layer on
each side of the obstacle somewhat upstream of the separation points. With increasing
height, these regions grow until they eventually merge above the front of the obstacle.
For small σ , figure 6 shows that these side regions are not present and with increasing
height, ζ , a region of negative pressure forms above the front of obstacle.

5. Conclusions
The idealized model here for two-layer strongly stratified steady flow over an

obstacle illustrates the main effects of flow separation below the summit layer on the
flow in this layer and over the top of the mountain. The flow in the upper layer is
controlled by σ = δ/α, the ratio of δFH = U 2

∞/g′, the height of interface perturbations
forced by dynamic pressure variations in the lower layer, to �H =αFH , the height
of the obstacle projecting into the upper layer. For small σ , the interface is effectively
rigid, the flow over the summit is effectively that of flow over an obstacle on a flat plate,
and lower-layer flow separation has no effect in the upper layer. For σ > 1, lower-
layer separation strongly interacts with the upper-layer flow, in particular, affecting
the wave field aloft through a substantial downward deflection of the interface
somewhat upstream of the separated region. This deflection introduces changes in the
density and pressure perturbations in the summit flow with magnitudes comparable
to those in flow over a ‘cutoff’ mountain (the case σ = 0). Pressure distributions for
large σ thus differ significantly from those for small σ . The wave pattern, similar to
non-hydrostatic periodic linear lee waves, which develops downstream of the obstacle
above the separation region is also of higher amplitudes when σ > 1 than when σ < 1.

Increasing the separation angle γS increases flow perturbations in the summit flow,
and especially in the downstream wake region. Perturbations in turbulent flows can
thus be expected to be bigger than in laminar flows even when velocities within
the separation region are close to zero. The interface displacement is downward for
the smaller (laminar) separation angle γ ≈ 55◦. This agrees qualitatively with the
experimental observations of Hunt & Snyder (1980) for F = 0.2 and Vosper et al.
(1999) for F < 0.4, although comparisons between the experiments and the present
theory can only be qualitative owing to the different flow set-up. For larger (turbulent)
angles when γ > 55◦, the interface is initially displaced downwards in front of the
body, but then recovers near the separated region. The amplitude of the displacement
is of order U 2

∞/g′ and depends only on the strength of the inversion layer. This can
be compared with the amplitude U∞/N , of the vertical displacement for uniformly
stratified flow (without an inversion). The summit flow, in these two types of stratified
flow are similar if the buoyancy change of the inversion layer, g′, is of the same
order as the buoyancy change, of order FHN2, in the summit layer for the uniformly
stratified flow as U 2

∞/g′ ∼ U 2
∞/FHN2 ∼ U∞/N .

Although the numerical results have been presented here for strong stratification
in the upper layer, the flow is governed there by the linear internal wave equation
and so results for weak or non-uniform stratification, or for a finite-height upper
layer, follow immediately. A significant extension of the present analysis would be
the inclusion of Coriolis effects to describe separated flow around large mountain
plateaux such as Greenland (Orr et al. 2005).
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